Clinical trials and the ANDMR

Monique Ryan and Robin Forbes

MDNSW 2021

Disclosures

- Site PI: ISIS/Ionis Pharmaceuticals, Roche, Biogen Idec, AveXis, GSK, PTC Therapeutics, Roche, Sarepta, BioMarin, EryDel, Genzyme, WAVE, Catabasis, Reveragen, Antisense Therapeutics
- Advisory Boards: Biogen, PTC Therapeutics, BioMarin, CSL
- Global Scientific Advisory Board: Biogen Idec
- Data Safety Monitoring Board: Eli Lilly

Neuromuscular disorders: a change in focus

- NMDs have historically been seen as neurodegenerative conditions with no effective treatments
 - Acquired NMDS have sometimes had specific therapies
 - Genetic NMDs have generally been managed with symptomatic therapy
- Neuromuscular disorders are now at the forefront of therapy development
 - Seven new treatments for genetic NMDS approved internationally in the last 24m
- This has resulted in a transformation in the focus of neuromuscular care
- We have moved from support to intervention
- This carries its own challenges
 - Rapid diagnosis, best practice management, capacity building, collaboration

Common NMDs

- CMT: 1 in 2500 individuals
- Myotonic dystrophy: 1 in 7000 individuals
- FSHD: 1 in ~8000 individuals
- SMA: 1 in 10 000 individuals
- Duchenne muscular dystrophy: 1 in 5000 boys
- Congenital myopathies: ~1 in 20 000
- Motor neurone disease: 1 in 50 000 individuals
- Congenital muscular dystrophies ~1 in 100 000

Duchenne muscular dystrophy

- X-linked recessive disorder affecting in 1 in 5000 boys
- Presents at 3-5 years with weakness and falls
- Gradual loss of muscle function
 - Wheelchair use ~12 y, assisted ventilation ~20 y
- Life expectancy previously ~30 years
 - Deaths 80% respiratory, 20% cardiac

DMD is caused by mutations in dystrophin

Therapeutic advances in DMD

- Standard of care includes:
 - Steroid therapy
 - (Non)invasive ventilation and assisted cough
 - Greater emphasis on GI/nutritional health
 - Better monitoring and treatment of bone health
 - Nutritional management
 - Treatment of cardiomyopathy

Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management

David J Birnkrant, Katharine Bushby, Carla M Bann, Susan D Apkon, Angela Blackwell, David Brumbaugh, Laura E Case, Paula R Clemens, Stasia Hadjiyannakis, Shree Pandya, Natalie Street, Jean Tomezsko, Kathryn R Wagner, Leanne M Ward, David R Weber, for the DMD Care Considerations Working Group*

Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management

David J Birnkrant, Katharine Bushby, Carla M Bann, Benjamin A Alman, Susan D Apkon, Angela Blackwell, Laura E Case, Linda Cripe, Stasia Hadjiyannakis, Aaron K Olson, Daniel W Sheehan, Julie Bolen, David R Weber, Leanne M Ward, for the DMD Care Considerations Working Group*

Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan

David J Birnkrant, Katharine Bushby, Carla M Bann, Susan D Apkon, Angela Blackwell, Mary K Colvin, Linda Cripe, Adrienne R Herron, Annie Kennedy, Kathi Kinnett, James Naprawa, Garey Noritz, James Poysky, Natalie Street, Christina J Trout, David R Weber, Leanne M Ward, for the DMD Care Considerations Working Group*

Birnkrant et al. Lancet 2018

Optimal steroid regimens: still not defined

EARLY CORTICOSTEROID TREATMENT IN 4 DUCHENNE MUSCULAR DYSTROPHY PATIENTS: 14-YEAR FOLLOW-UP

LUCIANO MERLINI, MD,¹ MONIA GENNARI, MD,² ELISABETTA MALASPINA, MD,² ILARIA CECCONI, MD,² ANNARITA ARMAROLI, MD,³ SAVERIO GNUDI, MD,⁴ BERIL TALIM, MD,⁵ ALESSANDRA FERLINI, MD,³ ALESSANDRO CICOGNANI, MD,² and EMILIO FRANZONI, MD²

Muscle Nerve 45: 796-802, 2012

Prednisone/prednisolone and deflazacort regimens in the CINRG Duchenne Natural History Study

Neurology® 2015;85:1048-1055

Michela Guglieri^{a,}, Kate Bushby^a, Michael P. McDermott^b, Kimberly A. Hart^b, Rabi Tawil^b, William B. Martens^b, Barbara E. Herr^b, Elaine McColl^c, Jennifer Wilkinson^c, Janbernd Kirschner^d, Wendy M. King^b, Michele Eagle^a, Mary W. Brown^b, Tracey Willis^e, Deborah Hirtz^f, Perry B. Shieh^g, Volker Straub^a, Anne-Marie Childs^h, Emma Ciafaloni^b, Russell J. Butterfieldⁱ, Iain Horrocks^j, Stefan Spinty^k, Kevin M. Flanigan^l, Nancy L. Kuntz^m, Giovanni Baranelloⁿ, Helen Roper^o, Leslie Morrison^p, Jean K. Mah^q, Adnan Y. Manzur^r, Craig M. McDonald^s, Ulrike Schara^t, Maja von der Hagen^u, Richard J. Barohn^v, Craig Campbell^w, Basil T. Darras^x, Richard S. Finkel^y, Giuseppe Vita^z, Imelda Hughes^{aa}, Tiziana Mongini^{ab}, Elena Pegoraro^{ac}, Matthew Wicklund^{ad}, Ekkehard Wilichowski^{ae}, W. Bryan Burnette^{af}, James F. Howard^{ag}, Hugh J. McMillan^{ah}, Mathula Thangarajh^{ai}, Robert C. Griggs^b

Contemporary Clinical Trials 58 (2017) 34-39

TWICE-WEEKLY GLUCOCORTICOSTEROIDS IN INFANTS AND YOUNG BOYS WITH DUCHENNE MUSCULAR DYSTROPHY

ANNE M. CONNOLLY, MD,^{1,2} CRAIG M. ZAIDMAN, MD,^{1,2} PAUL T. GOLUMBEK, MD, PhD,^{1,2} MARY M. CRADOCK, PhD,² KEVIN M. FLANIGAN, MD,³ NANCY L. KUNTZ, MD,⁴ RICHARD S. FINKEL, MD,⁵ CRAIG M. MCDONALD, MD,⁶ SUSAN T. IANNACCONE, MD,⁷ PALLAVI ANAND, MBBS,¹ CATHERINE A. SIENER, PT, MHS,¹ JULAINE M. FLORENCE, PT, DPT,¹ LINDA P. LOWES, PT, PhD,³ LINDSAY N. ALFANO, PT, DPT, PCS,³ LINDA B. JOHNSON, PT,⁶ ALINA NICORICI, BS,⁶ LESLIE L. NELSON, PT, PhD,⁷ JERRY R. MENDELL, MD,³ and FOR THE MDA DMD CLINICAL RESEARCH NETWORK

Muscle Nerve 59:650–657, 2019

Efficacy and safety of deflazacort vs prednisone and placebo for Duchenne muscular dystrophy

Neurology® 2016;87:2123-2131

DEFLAZACORT VERSUS PREDNISONE/PREDNISOLONE FOR MAINTAINING MOTOR FUNCTION AND DELAYING LOSS OF AMBULATION: A POST HOC ANALYSIS FROM THE ACT DMD TRIAL

PERRY B. SHIEH, MD, PHD,¹ JOSEPH McINTOSH, MD,² FENGBIN JIN, PHD,² MARCIO SOUZA, PHARMD, MBA,² GARY ELFRING, PHD,² SIVA NARAYANAN, MS, MPH,² PANAYIOTA TRIFILLIS, PHD,² STUART W. PELTZ, PHD,² CRAIG M. McDONALD, MD,³ and BASIL T. DARRAS, MD,⁴ AND THE ACT DMD STUDY GROUP

Muscle Nerve 58:639-645, 2018

Gene and genetic therapies for NMDs

- 1. Treatments aimed at the primary genetic cause
- Exon skipping
- Stop codon readthrough
- Gene therapy
- Genome editing
- Stem cell therapy

2. Treatments aimed at the secondary disease pathology

DMD therapies in development

Exon 'skipping' in DMD

The 'reading frame' hypothesis

missing exon

skipped exon

Target Exon	Deleted Exon	Patient % out of DMD ¹
51	29-50, 50, 45-50, 48-50, 49-50, 52, 52-63	13
<u>53</u>	43-52, 45-52, 47-52, 48-52, 49-52, 50-52, 52	8
45	18-44. 44. 46-47, 46-48, 46-49, 46-51, 46-53	8
44	35-43, 45, 45-54	6
43	44, 44-47, 44-48	4
46	45, 47-54	4
50	51, 51-53, 51-55	4
52	51, 53, 53-55	4

Aartsma-Rus et al. Hum Mutation 2009

Eteplirsen

- Morpholino AO given weekly IV for exon 51 deletion
- Initial study: subjects compared to a historical cohort.
- Approved by FDA, not by EMA, not approved in Australia
- Confirmatory phase 3 study overdue
- Recent data suggests may slow loss of ambulation in DMD by ~2 years to ~15.2 y

Ataluren

- Oral agent which binds ribosomal subunits, impairs recognition of premature stop codons
- Multiple phase II-III trials: safe and well tolerated

Figure 2: Least-squares mean change in 6-minute walk distance from baseline to week 48 (A) For patients in the ataluren (n=114) and placebo (n=114) groups of the intention-to-treat population. (B) For patients in the ataluren (n=124) and placebo (n=21) subgroup of patients with a baseline 6-minute walk distance of less than 300 m. (C) For patients in the ataluren (n=47) and placebo (n=52) subgroup of patients with a baseline 6-minute walk distance of 300 m or more to less than 400 m. (D) For patients in the ataluren (n=43) and placebo (n=41) subgroup of patients with a baseline 6-minute walk distance of 400 m or more. Error bars show SEs. ANCOVA model based on change from baseline as the dependent variable; independent variables included statification for age (<-9 years vs = 9 years), duration of previous corticosteroid use (6 months to <-12 months vs >12 months), and baseline 6-minute walk distance (<-350 m vs =350 m), treatment, and baseline 6-minute walk distance as a covariate. p values were obtained via ANCOVA applying multiple imputation. *p=0-012. †p=0-032. †p=0-030. 5p=0-007.

- ACT-DMD: McDonald et al. *Lancet* 2017)
 - 6MWD in favour of ITT
 - Difference greatest in 6MWD 300-400m window
- Ongoing phase 3 study
- FDA: rejected
- EMA: Conditional approval
- Registry: Long-term treated: median age of LOA 16.5y

Min Y-L, et al. 2019. Annu. Rev. Med. 70:239–55

Table 1. Dystrophin Large In-Frame Deletion and Clinical Phenotype

Genotype	% Lost	Level of Expression	Clinical Phenotype	Reference
Full-length	0%	+++	normal	16
$\Delta 17 - 48$	46%	+++	BMD	19
Δ13-47	47%	++ ~+++	BMD	23
$\Delta 10 - 44$	48%	++	DMD	143
$\Delta 10 - 44$	48%	N/A	BMD	28
Δ10-44	48%	N/A	BMD	28
Δ13-48	49%	N/A	BMD	27
Δ13-48	49%	++ ~+++	BMD	24
Δ13-48	49%	++	BMD	26
$\Delta 4$ -41	50%	+	DMD	24
$\Delta 4$ -41	50%	++	DMD	145
$\Delta 4$ -41	50%	_	DMD	26
Δ3-41	51%	++	DMD	26
Δ3-41	51%	++	IMD	144
Δ3-41	51%	+	DMD	143
Δ3-42	52%	+	IMD	24
Δ11-48	52%	N/A	DMD	142
$\Delta 5-44$	54%	N/A	DMD	28
Δ10-53	60%	N/A	DMD	25
Δ10-53	60%	+++	DMD	141
Δ14-60	61%	N/A	DMD	140
$\Delta 2-50 \ (\Delta 2-44)^{a}$	63%	++	DMD	139

Abbreviations: BMD, Becker muscular dystrophy; DMD, Duchenne muscular dystrophy; IMD, intermediate muscular dystrophy (clinical phenotype between BMD and DMD); N/A, information not available.

 a The patient has a $\Delta 2-44$ deletion in DNA but a $\Delta 2-50$ deletion in mRNA due to alternative splicing.

Duan Mol Ther 2018, Min et al. Ann Rev Med 2019

Dystrophin restoration in DMD: challenges

- Loss of muscle tissue and function starts very early in DMD: ? irreversible
- Functionality of microdystrophins in humans
 - ~40% smaller than smallest dystrophin reported in BMD
- Longevity of transgene expression: limited by muscle turnover
- Immune effects
 - ~50% of patients have anti-AAV antibodies; patients can be treated only once
- Any increase in dystrophin expression is likely to have *some* effect
 - Restoration of dystrophin unlikely to restore lost muscle tissue
 - ? Minimal level required for effective therapy of DMD at different ages

Spinal muscular atrophy

- SMA affects 1 in 10 000 people worldwide
- SMA causes hypotonia, progressive weakness and loss of motor function
- SMA is the 2nd most frequent recessive disease
- SMA was formerly the most common genetic cause of death in infancy
- 60-70% of all SMA patients have the most severe form, type 1 SMA
- Until very recently there have been no specific therapies for SMA

SMA therapy overview

Onasemnogene SMN protein expression levels cannot be detected in blood (do not transduce in hematopoietic cells). ASO, antisense oligonucleotide; SMA, spinal muscular atrophy; SMN, survival of motor neuron.

1. Zolgensma[®] (onasemnogene abeparvovec-xioi). Prescribing information. https://www.avexis.com/content/pdf/prescribing_information.pdf. 2. Spinraza[®] (nusinersen). Prescribing information. https://www.spinraza.com/content/dam/commercial/specialty/spinraza/caregiver/en_us/pdf/spinraza-prescribing-information.pdf. 3. Evrysdi[™] (risdiplam). Prescribing information. https://www.gene.com/download/pdf/evrysdi_prescribing.pdf. 4. Charnas L, et al. *Neuromusc Disord*. 2017;27:S207–S208. 5. https://clinicaltrials.gov/ct2/show/NCT02644668. 6. https://clinicaltrials.gov/ct2/show/NCT03921528. All websites accessed August 2020.

Challenges in SMA therapeutics

- Optimising timing, dosage, delivery route, distribution and uptake
- ? Importance of targeting other cell populations
- Long-term effect, long-term toxicity
- Biomarkers of disease progression and response to therapy
- Ways to quantitate SMN expression in target tissues
- Studies of 'combinatorial' therapy
- Cost of therapy

Gene therapy: adverse events

- Liver dysfunction
 - Potential for long-term oncogenesis
- Thrombocytopenia and bone marrow suppression
- Cardiac toxicity
- Renal: atypical HUS
- SMA: DRG inflammation remains a preclinical finding, significance unclear
- Ocular gene therapies: local inflammatory reactions

Uncertainty

Advances in treatment of the congenital myopathies

Table 2 Therapeutic Approaches to the Congenital Myopathies

Therapeutic Approach		Condition/Gene	Compound(s)	Reference(s)
Genetic	Viral-based gene transfer	XLMTM, others	AAV8 vector-based MTM1 transfer	62,64
	Gene editing	Various	Various	65
	Suppression of premature stop codons	Various	Various	68
	Exon skipping	CCD, other AD CMs	Various	67
	Protein downregulation (DNM2)	CNM (MTM1, BIN1)	Various	71
	Targeting of class II and III PI3 kinases	CNM (MTM1)	Various	72
	Protein upregulation (ACTAC)	NM (ACTA1)	Various	74
ERT	Myotubularin replacement	XLMTM	Myotubularin	75
Pharmacologic	Modification of RyR1 receptor calcium release	RYR1-RM (AD)	Dantrolene, Rycals, AICAR	76-81; 84,87
	Targeting thin/thick filament interactions	NM, others	CK-2017357, CK-1827452	90,91
	Reduction of oxidative stress	RYR1 + SEPN1-RM	N-acetylcysteine (NAC)	92
	Enhancement of neuromuscular transmission	CNMs, others	Pyridostigmine, Salbutamol*	95-99
	Stimulation of muscle growth pathways	Various	ActRIIB inhibitors, others	102
	Prevention of protein aggregates	MYH7-RM, others	4-phenylbutyrate (4-PBA)	105,107

AD, autosomal-dominant; CCD, Central Core Disease; CNM, Centronuclear Myopathy; NM, Nemaline Myopathy.

Among the therapeutic strategies summarized, enzyme replacement therapy (ERT) and viral-based gene transfer in X-linked myotubular myopathy (XLMTM), as well as antioxidant therapy in *RYR1*-and *SEPN1*-related myopathies have already reached (or are approaching) the clinical trial stage.

*Salbutamol probably exerts its effects through additional mechanisms other than enhancement of neuromuscular transmission (see main text).

Jungbluth and Muntoni Semin Ped Neurol 2019

Pompe disease

- Metabolic myopathy caused by (AR) GAA mutations
- Effect of ERT proven for infantile-onset PD: motor and cardiac function
 - Adults: motor and respiratory parameters improved
- Effect dependent on mannose-6-phosphate content of rhGAA and abundance of CI-MPR in target tissue
- Approaches to improved outcome:
 - ERT with increased M6P or increased affinity for CI-MPR
 - Chaperone or gene therapies

New therapies for Charcot-Marie-Tooth disease

PMP22	GJB1	MPZ	MFN2	Other
PXT3003 (3) [66–69] <i>ClinicalTrials.gov</i> NCT03023540	CAMKII inhibitors (p) [81–83,116]	Curcumin (p) [89,90,92]	Coenzyme Q10 [99]	Follistatin-based therapy (2) [115] <i>ClinicalTrials.gov</i> NCT03124459
Vitamin C (P, 1–3) [6,58,61–63,117–120] Progesterone Antagonists (p) [59,121]	Cx32 gene therapy (p) [85,86]	Sephin 1 (p) [94]	Mitofusion agonists (p) [100]	Stem cell research (p) [104,105] Gene therapy (p) [85,86,107,108,122,123]
siRNA (p) [60]				HDAC6 Inhibition (p) [101–103]
Antisense Oligonucleotides(p) [74]				NT-3 (p) [106–108]
Lipid supplementation (p) [75]				Nrg-1Type III (p) [109,110]
Schwann cell differentiation (p) [50,77] Curcumin (p) [89,90,92]				TACE modulation (p) [111,112] CSF1R inhibition (p) [114] Intermittent Easting (p) [46]

(p) = Preclinical; (0) = Phase 0 clinical trial; (1) = Phase 1; (2) = Phase 2; (3) = Phase 3.

Morena et al. Int J Mol Sci 2019

Charcot-Marie-Tooth disease: challenges

- > 100 genes, >1000 different mutations
- All forms of Mendelian inheritance possible, plus some cases *de novo*
- Different CMT phenotypes caused by mutations in the same gene
- Mutations in different genes may result in the same phenotype
- Often unclear why mutations cause length-dependent degeneration of peripheral nerves
- Gene replacement may be more useful for recessive neuropathies
- Dominant neuropathies may require 'knock down' interventions

Challenges with new treatments for NMDs Optimal clinical care

- Mandated for clinical trials but often not well-defined
- Variation in standards of care internationally
- Variation between paediatric and adult centres
- Standards of care are not always achievable by all centres
- Standards of care impacted by new therapies and altered expectations
- Need for best practice diagnostics

Ethical considerations

- Long-term prognosis in NMDs
 - Conversion of rapidly fatal disorder to one with long-term severe morbidity
- Defining a meaningful clinical response in adults
- Difficulty choosing between different trials
- Difficulty choosing between different agents
- Ethics of placebo-controlled studies
- Subject selection for trials
- Inequity of access to trials and therapies

Biogen's pricey muscle drug Spinraza too costly for Britain

2 MIN READ

LONDON (Reuters) - Biogen's muscle disease treatment Spinraza has been deemed too expensive for use on Britain's state-run health service, even after a price discount offered by the U.S. drugmaker.

Pharma

Novartis struggling to win payer coverage for \$2.1M gene therapy Zolgensma: analysts

by Arlene Weintraub | Jul 3, 2019 8:16am

Treatment of neuromuscular disorders has changed radically

- Many new therapies are being studied
- This offers exciting opportunities for all clinicians engaged in this field
- Things will continue to change quickly

... as will our patients

Thank you

Members of the RCH neuromuscular team

Our financial supporters: SOS Duchenne Foundation, MDA and MDNSW